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Abstract 

In this chapter, we have applied Lie algebraic method [U(2) Lie algebra 

framework] to calculate the vibrational frequencies of triatomic molecule, 

Hydrogen Sulphide (H2S). The calculated vibrational frequencies by Lie 

algebraic method are compared with existing experimental data.  
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INTRODUCTION 

Lie algebraic theory can be defined as the framework that studies the problems in 

mathematics and molecular physics. In the last part of the 19th century, Marius 

Sophus Lie proposed Lie algebras. On the other hand, these methods have been 

useful in the study of the problems in the beginning portion of the 20th century, 

after the evaluation of quantum mechanics. This is because quantum mechanics 

make use of commutators    , , where , -x x x xx p i h x p x p p x   which is the 

commutator of x and 
xp  (linear momentum operator in x direction) and
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/ 2h h  , where h is the Planck's constant, which are the significant 

ingredients of Lie algebras. The framework of the Lie algebraic method has been 

used to trace the Heisenberg formulation of quantum mechanics [1, 2, 3, 4]. The 

efficient development of Lie algebraic technique to physical systems (spectrum 

algebras) was introduced by Iachello and Arima in their pioneer work of spectra 

of atomic nuclei (interacting Boson model) [5, 6, 7, 8]. Iachello (1981) presented 

Lie algebraic method (vibron model) for the study of vibrational spectra of 

molecules [9]. This method is based on the second quantization of the 

Schrodinger wave equation with a 3-Dimensional Morse potential function and is 

described as ro-vibration spectra of diatomic molecules [10]. This method was 

improved in consequent works to study ro-vibrational spectra of polyatomic 

molecules [11, 12, 13, 14, 15, 22, 23, 24, 25]. Significant interest has focused on 

the progress of two coupled 1-Dimensional oscillators [16] and its generalization 

to many coupled 1-Dimensional oscillators [17, 18]. This is given a complete 

framework to analyze bending vibrational modes in linear molecules [19].  

 

Lie algebraic method for H2S 

The Lie algebraic method is based on the isomorphism of U(2)  Lie algebra and 

the 1-Dimensional Morse oscillator, whose eigenstates may be connected with 

U(2) O(2) states N,m . TwoU(2)  Lie algebras are introduced 

1 2(U (2) and U (2))  to describe stretching bonds (S-H) respectively in H2S. 

The H2S can be described by two chains of the molecular dynamical group as 

given below.  
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1 2
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1 2 1 2
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    

  

  



 

Here chain (I) and chain (II) illustrate local coupling and normal coupling 

respectively. Quantum numbers in the chain (I) corresponding to various 

algebras are indicated by n, m and in the chain (II) are
1 2v , v . Vibron numbers N1 

and N2 are corresponding to the number of bound states of two oscillators and 

these are constants for the system. It is also noted that 
1 2n + m v v   is a 

conserved quantity. The bending vibrations can be assigned with algebra 
3U (2)  
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to be combined with the algebra 
1 2U (2) U (2) associate with the interacting 

stretching vibrations.  

The Hamiltonian in the case of stretching vibrations for the H2S  is of the form 

2 2 2

0 i i ij ij ij ij

i=1 i<j i<j

H E A C A C M   .       

Here i vary from 1 to 2 for two stretching bonds. 

0 1 1 2 2 12 12 12 12H=E +A C +A C +A C + M .         ... (I)  

Where 
1 2 12 12A ,A ,A  and   are algebraic parameters, which are determined by 

spectroscopic data. The local stretching vibrations are denoted by 
1 3v  and v , 

while 
2v denotes bending vibrations for H2S. The Hamiltonian in the equation (I) 

can be diagonalized to get predicated energy levels. Where in the equation (I), 

iC  is an invariant operator of the uncoupled bond with eigenvalues 

 2

i i i4 N v v   and the operator 
ijC  coupled bonds with matrix elements 

    
2

i i j j ij i i j j i j i j i j .

                                                                                       

N ,  v ;  N , v C N , v ;  N , v 4 v  v  

                           ..

v  v N N

. 

 
 

    


(II(a))

 

The Majorana operator 
ijM  in the equation (1) is used to define local mode 

interactions in pairs and contains both diagonal and non-diagonal matrix 

elements given by 

 

   

   

i i j j i i j j i j j i i j

1/2

i i j j i i j j j i i i j j

1/2

i i j j i i j j i j j j i i

ij

ij

ij

N ,  v ;  N , v N , v ;  N , v N v  N v –  2v v

N ,  v ;  N , v N , v ;  N , v v v 1 N – v N – v  1

N ,  v ;  N , v N , v ;  N , v v

M

1

v 1 N – v N –

1 M

1 1 M .

...

v  1

 

   

   

  
 

  
 

(II(b))

 

The Majorana operator 
ijM  annihilate one quantum of vibration in bond i and 

create one in bond j, or vice versa. 
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RESULTS AND DISCUSSION 

The parameters for stretching bonds of the water molecule in equations (1) and 

(II) as 
i i ij 12 ij 12N N, A A, A A , (i 1,2)      . The parameters 

ij  

illustrate the interactions between stretching bonds 
12( ) . The vibron number 

iN  for stretching bonds of H2S will be calculated by the following relation 

e
i

e e

ω
N -1, i = 1, 2.

ω x  
  

Here 
e e eω andω x  are the spectroscopic constants. For the H2S in stretching 

mode, we got the values of 
e e eω andω x  for the S-H bond from the work of 

Nakamoto [20]. Using numerical values of 
e e eω andω x  for the bond S-H as the 

initial guess for the value of the vibron number 
iN , it can be understood from 

the literature that in the algebraic method, there is some condition to change (not 

be larger than 20%  of the original value) the value of 
iN  to get better results. 

The initial guess value for the parameter  is obtained by using the energy 

equation for the single-oscillator fundamental mode, which is given as, 

   E v 1 4A N- ...1 .= = - (III)  

Using the equation (III), A  can be evaluated as, 

E
A . ..

4(
. 

1 N)



(IV)  

Where A and E  are the average values of the algebraic parameters A’s and E’s. 

To find an initial guess value for  , whose role is to split the initially degenerate 

local modes is obtained by the relation, 

1 2E E
  .

3
..

N
.


 (V)  

In order to get more accurate results, a numerical fitting procedure (in a least 

square sense, for example) is used to get the parameters A,   starting from 

values as given by equations (IV) and (V). The initial guess for 
12A  may be 

taken as zero. Vibrational frequencies of a H2S are calculated using the 

Hamiltonian expression (Lie algebraic method) in fundamental mode and are 

given in the table (1). The fitting parameters for a H2S are presented in  

the table (2) 
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Table 1. The experimental and calculated vibrational frequencies (in cm-1) of 

H2S 

 1 2 3v v v  Experimental [21] Calculated 

(1 0 0) 2614.41 2613.17 

(2 0 0 ) 5144.99 5143.416 

(3 0 0) 7576.38 7575.28 

(4 0 0) 9911.02 9910.22 

(5 0 0) 12149.02 12150.074 

(6 0 0) - 14294.8464 

(7 0 0) - 14013.706 

 

Table 2. Algebraic parameters for H2S [21] 

Stretching parameters 

N1= N2 = N= 56 

A1 = A2 = A= -11.892 

A12 = 0.0069 

12 = 0.125 

 

CONCLUSION 

In the table (1), the calculated values by Lie algebraic method are compared with 

experimental vibrational frequencies (stretching) of H2S and we observed that 

these calculated values are in close agreement with the experimental values. 
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